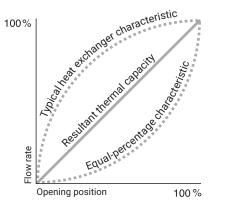





## 2-way and 3-way characterised control valves

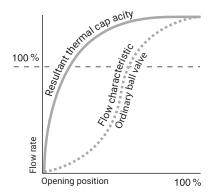
### Table of contents


| Introduction                                                                |    |
|-----------------------------------------------------------------------------|----|
| The Belimo characterised control valve                                      | 2  |
| Project planning                                                            | 3  |
| Design and dimensioning                                                     | 3  |
| Flow characteristics                                                        | 4  |
| Design and dimensioning                                                     |    |
| 2-way and 3-way characterised control valves R2 / R3 / R6R / R7R            | 5  |
| 2-way and 3-way characterised control valves R4(K) / R5(K)                  | 6  |
| 2-way characterised control valves R6WS8                                    | 7  |
| 2-way characterised control valves R4D(K)                                   | 8  |
| Characterised control valve selection table                                 | 10 |
| Dimensioning and selection table for 2-way and 3-way open-close ball valves | 11 |


#### The Belimo characterized control valve

#### Ordinary ball valves

#### are unsuitable as control devices


In order to ensure good stability of control, a hydraulic final controlling element must possess a flow characteristic that supplements the non-linear characteristic of the heat exchanger in the HVAC system.





An equal-percentage valve characteristic is desirable in order to produce a linear relationship between the thermal output and the opening position of the final controlling element. This means that the flow rate increases very slowly as the final controlling element begins to open.

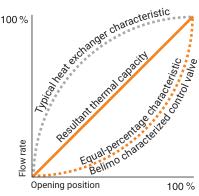
Unfortunately, this characteristic is severely distorted in ordinary ball valves.



Characteristic of an ordinary ball valve

The reason for this is that an ordinary ball valve has an extremely high flow coefficient ( $k_{vs}$  value) compared with its nominal size, several times that of a comparable globe valve.

Therefore, an ordinary ball valve is not very suitable for performing control functions:


- Flow coefficient excessive due to the design
- Flow control inadequate in the part-load range

## Belimo adds «characterized control» to ball valves

Belimo has succeeded in solving the problem of the distorted flow characteristic of ordinary ball valves.

A so-called «characterizing disc» in the inlet of the characterized control valve converts the valve's characteristic to the equal-percentage kind.

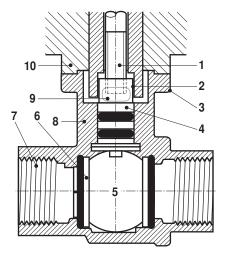
The side of the characterizing disc facing the ball is concave and in contact with the surface of the ball. Thus, the actual flow is regulated by the hole in the ball and by the V-shaped aperture in the characterizing disc.



Characteristic of a Belimo characterized control valve

The  $k_{vs}$  value is reduced and corresponds approximately to that of a globe valve of comparable size. In order to avoid having to fit pipe reducers in the majority of cases, each valve size is also available with an appropriate choice of  $k_{vs}$  values.

Advantages of the Belimo characterized control valve


- Equal-percentage characteristic
- · No initial jump in flow on opening
- Excellent stability of control thanks to the characterizing disk



- kvs values similar to those of globe valves of comparable size
- Fewer pipe reducers needed
- Better part-load characteristics and less prone to vibration, greater stability of control
- Tight-sealing (2-way)

#### Elements of the characterized control valve

- 1 Simple direct mounting using a central screw. The rotary actuator can be mounted in four different positions
- 2 Square stem head for form-fit attachment of the rotary actuator
- 3 Identical mounting flange for all sizes
- 4 Stem with two O-ring seals for a long service life



- 5 Ball and stem made of stainless steel or chrome-plated brass
- 6 Characterizing disc produces equal-percentage flow characteristic
- 7 Internal thread connection (ISO 7-1), external thread connection (ISO 228-1) and flange connection (ISO 7005-1/2)
- 8 Forged fitting, nickel-plated brass body
- 9 Vent window to prevent the accumulation of condensation
- **10** Thermal decoupling of the actuator from the ball valve

### Optimum choice of $k_{\nu s}$ values of identical size

- · Better controllability
- Lower installation costs

The Belimo range of characterized control valves includes 2-way and 3-way types. These are available in a variety of sizes and with a choice of  $k_{vs}$  values.

A characterized control valve is supplied as a unit complete with a suitable Belimo rotary actuator.

Characterised control valves • en • 2020.12 • Subject to changes





| Project planning                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Relevant information               | The data, information and limit values listed on the "Characterised control valves" data sheets are to be taken into account and/or complied with, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Closing and differential pressures | The maximum permissible closing and differential pressures can be found in the data sheets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Pipeline clearances                | The minimum clearances between the pipelines and the walls and ceilings required for project planning depend not only on the valve dimensions but also on the selected actuator and can be found in the data sheets of the valves and actuators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 2-way characterised control valves | Characterised control valves are to be installed in the return as throttling devices. This leads to lower thermal loads on the sealing elements in the valve. The prescribed flow direction must be observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 3-way characterised control valves | 3-way characterised control valves are mixing devices. The flow direction must be observed for<br>all pressure levels. Installation in the supply or return is dependent on the selected hydraulic<br>circuit.<br>The 3-way characterised control valve may not be used as a diverting valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Diverting circuit                  | Thanks to the reduced flow rate in the bypass, no balancing valve in the bypass line is necessary with the diverting circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Bypass 70% k <sub>vs</sub>         | Full load Zero load with<br>bypass throttle Zero load with<br>reduced bypass k <sub>vs</sub><br>Ap = 9  kPa $Ap = 0  kPa$ $Ap = 0  kPa$ $Ap = 0  kPa$ $Ap = 9  kPa$ |  |  |  |  |  |
| Water quality                      | The water quality requirements specified in VDI 2035 must be adhered to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Dirt filter                        | Characterised control valves are regulating devices The use of dirt filters is recommended in order to prolong their service life as modulating instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Shut-off devices                   | Care must be taken to ensure that sufficient numbers of shut-off devices are installed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Design and dimensioning            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Control characteristics            | In order to ensure that a valve achieves good control characteristics, thus making it possible to ensure a long service life for the final controlling element, proper configuration of the valve with the correct valve authority is required. The valve authority $P_v$ is the measure of the control characteristics of the valve in conjunction with the hydraulic network. The valve authority is the ratio between the differential pressure of the completely opened valve at the nominal flow rate and the maximum differential pressure occurring with the closed valve. The greater the valve authority, the better the control characteristics. The smaller the valve authority $P_v$ becomes, the more the operational behaviour of the valve will deviate from the linearity, i.e. the poorer the behaviour of the volumetric flow control. A valve authority of $P_v$ of >0.5 is strived for in everyday practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Design for use with glycol         | Salts were formerly added to the water to reduce its freezing point; this was referred to as brine applications. Nowadays, glycols are used and one speaks of refrigerant agents. Depending on the concentration of the refrigerant agent (type of glycol) used and the medium temperature, the density of the water/glycol mixture varies from 1% to 9%. The volumetric deviation which results from this process is less than the permitted quantity tolerance of the $k_{vs}$ value of the valve (of ±10% in accordance with VDE 2178) and need not as a rule be taken into account, even if glycols require a slightly elevated $k_v$ value. Depending on the type of glycol, tolerance with the valve materials used must be ensured and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

Depending on the type of glycol, tolerance with the valve materials used must be ensured and the permitted maximum concentration (50 percent) may not be exceeded.

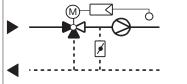


#### **Flow characteristics**

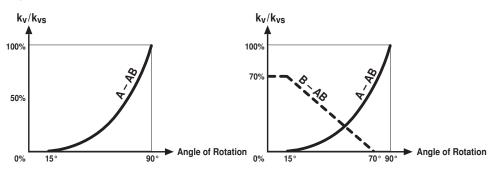
#### 2-way characterised control valve

The characteristic curve is equal-

percentage, with a characteristic curve factor n(gl) = 3.2 or 3.9. This guarantees stable control characteristics in the elevated partial load range. The curve is linear in the lower opening range between 0 ... 30% operating range. This ensures outstanding control characteristics, including in the lower partial load range. The operating range 0 ... 100% corresponds to an angle of rotation of 15 ... 90° $\triangleleft$ .


The characterised control valves function as tight-closing shut-off devices between angles of rotation of 0 ...  $15^{\circ}$  .

#### 3-way characterised control valve


Same behaviour via the control path A – AB as with the 2-way characterised control valves. The flow rate in the bypass B – AB is designed to be 70% of the  $k_{vs}$  value of the control path (A – AB). The characteristic curve in the bypass is linear.



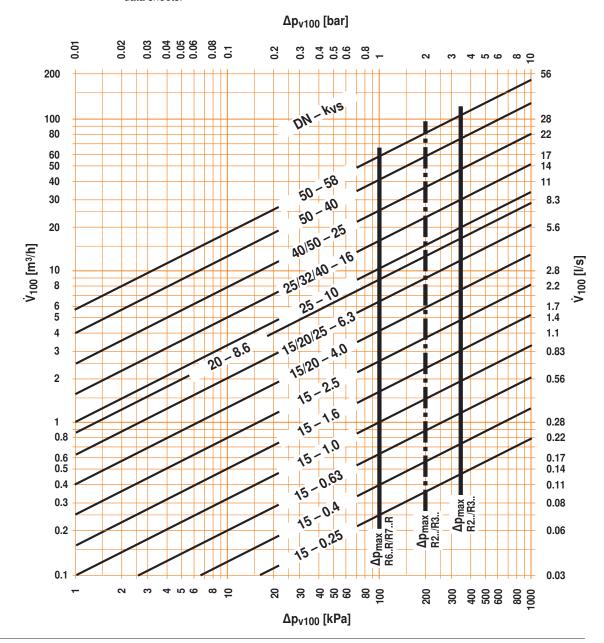
As a result of its ball construction, the 3-way characterised control valve is suitable only to a limited extent for conventional return line temperature controls. It is therefore recommended that return line temperature controls be implemented as double mixing circuits when these characterised control valves are used.



There are no restrictions with air heater mixing circuits or with injection circuits.






#### Calculation diagram for 2-way and 3-way characterised control valves R2.. / R3.. / R6..R / R7..R



Application These characterised control valves are used in open (R2.. und R6..R) and closed cold and hot water systems for modulating water-side control of air treatment and heating plants.
Media Cold and hot water, water with glycol up to max. 50% vol.

### Medium temperatures

Cold and hot water, water with glycol up to max. 50% vol. The permissible medium temperatures can be found in the corresponding valve and actuator data sheets.



#### \_\_\_\_\_ Δp<sub>max</sub>

Maximum permitted differential pressure for long service life across control path A - AB, with reference to the whole opening range.

 $\begin{array}{l} \Delta p_{v100} \\ \text{Differential pressure with ball valve full open.} \\ \vdots \end{array}$ 

#### 

Nominal flow rate with  $\Delta p_{v100}$ 

Formula k<sub>vs</sub>  $k_v = \frac{\dot{V}_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$  $k_{vs} = \frac{(m^3/h)}{(m^3/h)}$  $\dot{V}_{100} = \frac{(m^3/h)}{(m^3/h)}$  $\Delta p_{v100} = [kPa]$ 

..... Δp<sub>max</sub> For low-noise operation (R2../R3..)



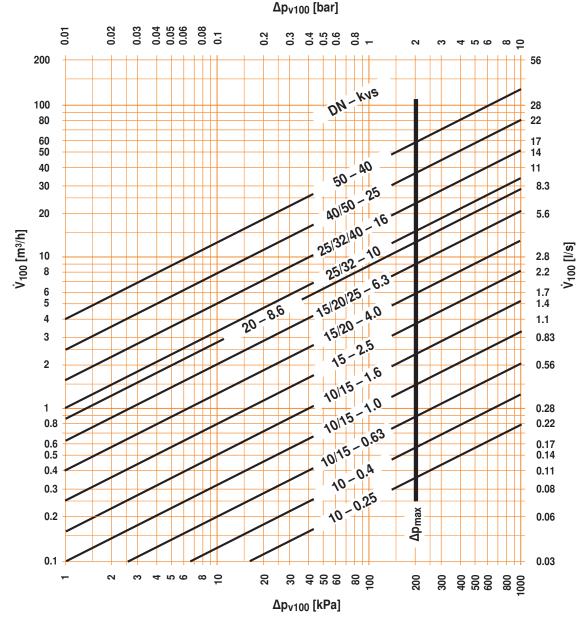
#### Calculation diagram for 2-way and 3-way characterised control valves R4..(K) / R5..(K)





Application

Media


Cold and hot water, water with glycol up to max. 50% vol.

**Medium temperatures** 

modulating water-side control of air treatment and heating plants.

The permissible medium temperatures can be found in the corresponding valve and actuator data sheets.

These characterised control valves are used in open and closed cold and hot water systems for



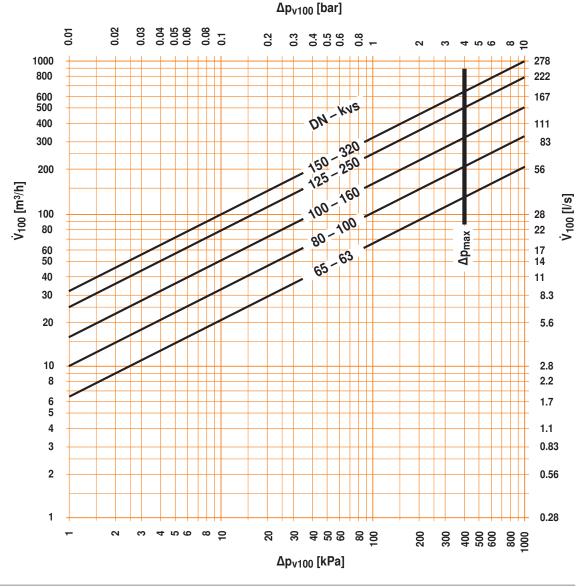
#### Δp<sub>max</sub>

Maximum permitted differential pressure for long service life across control path A – AB, with reference to the whole opening range.

| Δpv100<br>Differential pressure with ball valve full open.  | Formula k <sub>vs</sub> | k |
|-------------------------------------------------------------|-------------------------|---|
| $\dot{V}_{100}$<br>Nominal flow rate with $\Delta p_{v100}$ |                         | k |






#### Calculation diagram for 2-way characterised control valves R6..W..-S8

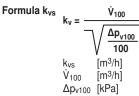


#### Application

These characterised control valves are used in closed cold and hot water systems for modulating water-side control of air treatment and heating plants. Cold and hot water, water with glycol up to max. 50% vol.

Media Cold and hot v Medium temperatures -10 ... 120°C




#### \_\_\_\_\_ Δp<sub>max</sub>

Maximum permitted differential pressure for long service life across control path A - AB, with reference to the whole opening range.

 $\Delta p_{v100}$  Differential pressure with ball valve full open.

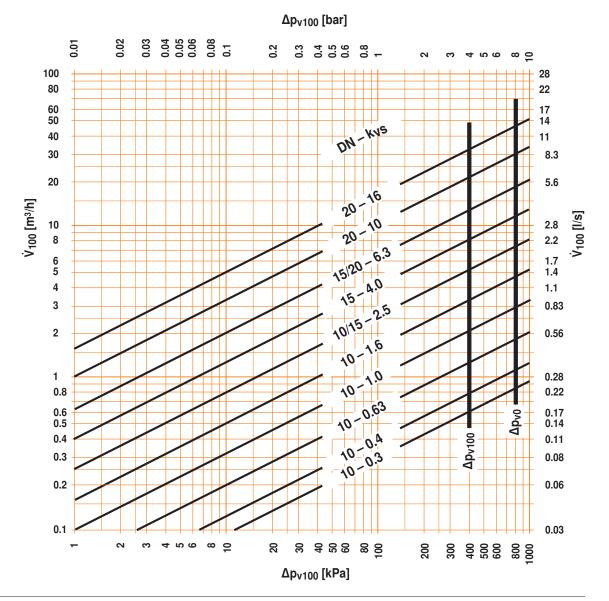
#### . Ϋ<sub>100</sub>

Nominal flow rate with  $\Delta p_{v100}$ 





#### Calculation diagram for 2-way characterised control valves R4..D(K)



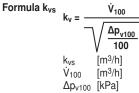

Application

Media

These characterised control valves are used in open and closed cold and hot water systems for modulating water-side control of water in district heating applications. Cold and hot water, water with glycol up to max. 50% vol.

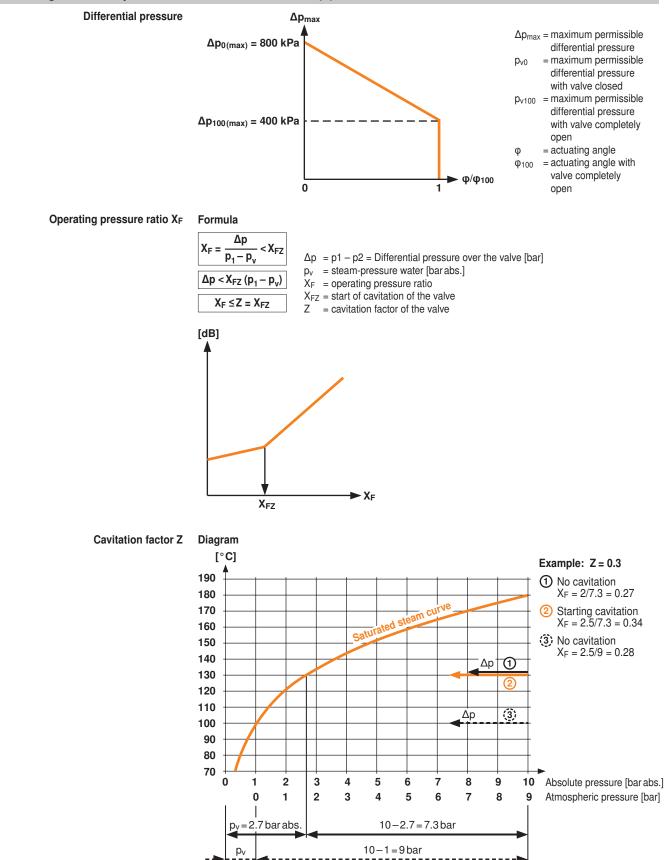
Medium temperatures 2...130°C




#### \_\_\_\_\_ Δp<sub>v0</sub>

maximum permissible differential pressure for long service life with closed ball valve




maximum permissible differential pressure for long service life with ball valve full open

 $\dot{V}_{100}$  Nominal flow rate with  $\Delta p_{v100}$ 





#### Calculation diagram for 2-way characterised control valves R4..D(K)





#### Characterised control valve selection table

| Rated pressure ps [kPa]pressure classMax. differential pressure Δpmax[kpa]Valve design (2-way / 3-way) |                |                       | 1600<br>PN 16                 |           |         |              | 00<br>N 6    | 1600<br>PN 16 | 2700<br>PN 16 |
|--------------------------------------------------------------------------------------------------------|----------------|-----------------------|-------------------------------|-----------|---------|--------------|--------------|---------------|---------------|
|                                                                                                        |                | 3!<br>(200 for low-ne | 200                           |           | 100     |              | 400          | 400           |               |
|                                                                                                        |                |                       |                               |           |         |              |              |               |               |
| Internal thread (                                                                                      | ISO 7-1)       |                       |                               |           |         |              |              |               |               |
| External thread                                                                                        | (ISO 228-1)    |                       |                               |           |         |              |              |               |               |
| Flange (ISO 700                                                                                        | )5-1/2)        |                       |                               |           |         |              |              |               |               |
| Valve characteristic curve<br>—— Control path A–AB<br>Bypass B–AB                                      |                | ↓ kv<br>H             | κ.<br>H                       | Å kv<br>H | kv<br>H | H Ku         | t Ku         | H H           | Å Kv          |
| Characterised                                                                                          | control valves | R2                    | R3                            | R4        | R5      | R6R          | R7R          | R6W           | R4D(K         |
| k <sub>vs</sub>                                                                                        | DN             |                       |                               |           |         |              |              |               |               |
|                                                                                                        | 10             |                       |                               | R405K     | R505K   |              |              |               |               |
| 0.25                                                                                                   | 15             | R2015-P25-S1          | R3015-P25-S1                  |           |         |              |              |               |               |
| 0.3                                                                                                    | 10             |                       |                               |           |         |              |              |               | R404DK        |
|                                                                                                        | 10             |                       |                               | R406K     | R506K   |              |              |               | R405DK        |
| 0.4                                                                                                    | 15             | R2015-P4-S1           | R3015-P4-S1                   |           |         |              |              |               |               |
|                                                                                                        | 10             | 1120101101            |                               | R407K     | R507K   |              |              |               | R406DK        |
| 0.63                                                                                                   | 15             | R2015-P63-S1          | R3015-P63-S1                  | R409      | R509    | R6015RP63-B1 | R7015RP63-B1 |               | TTTOODI       |
|                                                                                                        | 10             | 11201010001           |                               | R408K     | R508K   |              |              |               | R407DK        |
| 1                                                                                                      | 15             | R2015-1-S1            | R3015-1-S1                    | R410      | R510    | R6015R1-B1   |              |               | THUT          |
|                                                                                                        | 10             | 112013101             | 1100101101                    | R409K     | 11010   |              |              |               | R408DK        |
| 1.6                                                                                                    | 15             | R2015-1P6-S1          | R3015-1P6-S1                  | R411      | R511    | R6015R1P6-B1 | R7015R1P6-B1 |               | TI400DIV      |
|                                                                                                        | 10             | H2013-1F0-31          | H3013-1F0-31                  | N411      | njii    | NOUISNIFO-DI |              |               | R409DK        |
| 2.5                                                                                                    | 15             | D0015 0D5 01          | R3015-2P5-S1                  | R412      | R512    | R6015R2P5-B1 |              |               | R412D         |
|                                                                                                        | 15             | R2015-2P5-S1          |                               |           |         |              | D7015D4 D1   |               |               |
| 4                                                                                                      |                | R2015-4-S1            | R3015-4-S1                    | R413      | R513    | R6015R4-B1   | R7015R4-B1   |               | R413D         |
|                                                                                                        | 20             | R2020-4-S2            | R3020-4-S2                    | R417      | R517    |              |              |               | DALO          |
| ~ ~                                                                                                    | 15             | R2015-6P3-S1          | <b>D</b> 0000 0 <b>D</b> 0 00 | R414      | DEto    |              |              |               | R414D         |
| 6.3                                                                                                    | 20             | R2020-6P3-S2          | R3020-6P3-S2                  | R418      | R518    | R6020R6P3-B1 | R7020R6P3-B1 |               | R417D         |
|                                                                                                        | 25             | R2025-6P3-S2          | R3025-6P3-S2                  | R422      | R522    |              |              |               |               |
| 8.6                                                                                                    | 20             | R2020-8P6-S2          |                               | R419      |         |              |              |               | DATOR         |
| 10                                                                                                     | 20             | Danag in Gr           | Dagar in Gr                   | D (co     | DESS    |              |              |               | R418D         |
|                                                                                                        | 25             | R2025-10-S2           | R3025-10-S2                   | R423      | R523    | R6025R10-B2  | R7025R10-B2  |               | DATOR         |
|                                                                                                        | 20             | Decent                |                               | D. (A)    |         |              |              |               | R419D         |
| 16                                                                                                     | 25             | R2025-16-S2           | Danag in Co                   | R424      | DEAL    | Doogo Die De | DZOODIODI    |               |               |
|                                                                                                        | 32             | R2032-16-S3           | R3032-16-S3                   | R431      | R531    | R6032R16-B3  | R7032R16-B3  |               |               |
|                                                                                                        | 40             | R2040-16-S3           | R3040-16-S3                   | R438      | R538    |              | R7040R16-B3  |               |               |
| 25                                                                                                     | 40             | R2040-25-S3           | R3040-25-S4                   | R439      | DE      | R6040R25-B3  |              |               |               |
|                                                                                                        | 50             | R2050-25-S4           | R3050-25-S4                   | R448      | R548    |              | R7050R25-B3  |               |               |
| 40                                                                                                     | 50             | R2050-40-S4           | R3050-40-S4                   | R449      |         | R6050R40-B3  |              |               |               |
| 58                                                                                                     | 50             |                       | R3050-58-S4                   |           |         |              |              |               |               |
| 63                                                                                                     | 65             |                       |                               |           |         |              |              | R6065W63-S8   |               |
| 100                                                                                                    | 80             |                       |                               |           |         |              |              | R6080W100-S8  |               |
| 160                                                                                                    | 100            |                       |                               |           |         |              |              | R6100W160-S8  |               |
| 250                                                                                                    | 125            |                       |                               |           |         |              |              | R6125W250-S8  |               |
| 320                                                                                                    | 150            |                       |                               |           |         |              |              | R6150W320-S8  |               |

Medium temperature Leakage rate

The permissible medium temperatures can be found in the corresponding valve and actuator data sheets. 2-way: Leakage rate A, air bubble tight (EN 12266-1)

3-way: Control path A – AB leakage rate A, tight (EN 12266-1)

Bypass B - AB leakage rate class I (EN 1349 and EN 60534-4), max. 1% of kvs value

· For all possible combinations with rotary actuators and their closing pressures and maximum permissible differential pressures, see the document "Overview Valve-actuator combinations"

· For detailed information concerning rotary actuators, see the data sheets for the rotary actuators



#### Dimensioning and selection table for 2-way and 3-way open-close ball valves

| Differential pressure<br>Δp <sub>max</sub> [kPa] | 0.1     | 1.0  | 3.0  | 10.0 | <b>k<sub>vs</sub></b><br>[m³/h] | <b>DN</b><br>[mm]             |                               |                               | ***       |
|--------------------------------------------------|---------|------|------|------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------|
|                                                  | 0.13    | 0.4  | 0.69 | 1.3  | 4                               | 10                            | R410DK                        |                               |           |
|                                                  | 0.17    | 0.55 | 1.0  | 1.7  | 5.5                             | 15                            |                               |                               | R3015-BL1 |
|                                                  | 0.27    | 0.86 | 1.5  | 2.7  | 8.6                             | 15                            | R415                          | R515                          |           |
|                                                  | 0.28    | 0.9  | 1.6  | 2.8  | 9                               | 32                            |                               |                               | R3032-BL2 |
|                                                  | 0.32    | 1.0  | 1.7  | 3.2  | 10                              | 25                            |                               |                               | R3025-BL2 |
|                                                  | 0.35    | 1.1  | 1.9  | 3.5  | 11                              | 20                            |                               |                               | R3020-BL2 |
|                                                  | 0.38    | 1.2  | 2.1  | 3.8  | 12                              | 15                            | R415D                         |                               |           |
|                                                  | 0.44    | 1.4  | 2.4  | 4.4  | 14                              | 40                            |                               |                               | R3040-BL3 |
|                                                  | 0.47    | 1.5  | 2.6  | 4.7  | 15                              | 15                            | R2015-S1<br>R6015R-B1         | R3015-S1<br>R7015R-B1         |           |
|                                                  |         |      |      |      |                                 | 32                            |                               |                               | R3032-BL3 |
|                                                  | 0.51    | 1.6  | 2.8  | 5.1  | 16                              | 32                            | R430                          | R530                          |           |
|                                                  | 0.66    | 2.1  | 3.6  | 6.6  | 21                              | 20                            | R420                          | R520                          |           |
|                                                  | 0.76    | 2.4  | 4.2  | 7.6  | 24                              | 50                            |                               |                               | R3050-BL3 |
| Flow rate V <sub>100</sub>                       | 0.79    | 2.5  | 4.3  | 7.9  | 25                              | 20                            | R420D                         |                               |           |
| [m <sup>3</sup> /h]                              | 0.82    | 2.6  | 4.5  | 8.2  | 26                              | 25                            | R2025-S2<br>R425<br>R6025R-B2 | R3025-S2<br>R525<br>R7025R-B2 |           |
| -                                                | 1.0     | 3.1  | 5.4  | 9.8  | 31                              | 40                            | R2040-S3<br>R6040R-B3         | R3040-S3<br>R7040R-B3         |           |
| -                                                | 1.0 3.2 |      |      |      |                                 | 20                            | R2020-S2<br>R6020R-B1         | R3020-S2<br>R7020R-B1         |           |
|                                                  |         | 5.5  | 10.1 | 32   | 32                              | R2032-S3<br>R432<br>R6032R-B3 | R3032-S3<br>R532<br>R7032R-B3 |                               |           |
|                                                  |         |      |      |      |                                 | 40                            | R440                          | R540                          |           |
|                                                  | 1.5     | 4.7  | 8.1  | 14.9 | 47                              | 40                            |                               |                               | R3040-BL4 |
|                                                  | 1.6     | 4.9  | 8.5  | 15.5 | 49                              | 50                            | R2050-S4<br>R450<br>R6050R-B3 | R3050-S4<br>R550<br>R7050R-B3 |           |
|                                                  | 2.4     | 7.5  | 13.0 | 23.7 | 75                              | 50                            |                               |                               | R3050-BL4 |

Formula  $\dot{V}_{100} \dot{V}_{100} = k_{vs} - k_{vs$  $\frac{\Delta p_{v100}}{100}$  Connections: R2.. / R3.. Internal thread R4.. / R5.. External thread R6.. / R7.. Flange

k<sub>vs</sub> V<sub>100</sub> [m<sup>3</sup>/h] [m<sup>3</sup>/h] [kPa]  $\Delta p_{v100}$ 

# **All-inclusive**



Belimo Europe

**BELIMO Automation AG** Brunnenbachstrasse 1 CH-8340 Hinwil, Switzerland

Tel. +41 43 843 61 11 Fax. +41 43 843 62 68 info@belimo.ch www.belimo.ch

