

2-way and 3-way globe valves

Table of Contents

Background Project planning Flow characteristics Principles of flow control Hydraulic circuits	2 2 3 4
Design and dimensioning Cavitation diagrams Design for use with glycol Design in low-pressure steam applications Dimensions diagram for 2-way and 3-way globe valves Selection of globe valves Selection of globe valve actuators	5 6 6 7 8 8

Project planning								
Relevant information	The data, information and limit values listed on the valve actuators are to be taken into account and	he data sheets for the globe valves and globe /or complied with, respectively.						
Closing pressures	Maximum closing pressures Δp_s are dependent on the valve size and the drive force. The for all valve-actuator combinations are to be found in the closing pressure table «Overviv Valve-actuator combinations».							
Pipeline clearances	The minimum clearances between the pipelines and the walls and ceilings required for pro- planning depend not only on the valve dimensions but also on the selected actuator. The dimensions are defined in the «Globe valves» data sheets.							
2-way globe valves	2-way globe valves are to be provided as the preferred throttling devices in the return. This le to lower thermal loads on the sealing elements in the valve. The prescribed direction of flow must be observed.							
3-way globe valves	3-way globe valves are mixing devices. The direct	ction of flow must be observed for all pressure						
Note The 3-way globe valve may not be used as A a diverting valve.	levels. Installation in the supply or return is dependent on the selected hydraulic circuit. In the case of the diverting circuit, it is recommended that a balancing valve be provided in bypass line.							
Dirt filter	Globe valves are regulating devices. The use of their service life for performing control tasks.	dirt filters is recommended in order to prolong						
Shut-off devices	Care must be taken to ensure that sufficient num	bers of shut-off devices are installed.						
Water quality	The water quality requirements specified in VDI	2035 must be adhered to.						
Flow characteristics								
2-way globe valve	The characteristic curve is equal-percentage, with a characteristic curve factor $n(gl) = 3$. This guarantees stable control characteristics in the elevated partial load range. The curve is linear in the lower opening range between 0 30% stroke. This ensures outstanding control characteristics, including in the lower partial load range, see graph on the right.	kv/kvs 100% 50% 0% 50% 100% Stroke						
3-way globe valve with equal percentage control path (valves H5B, H7R, H7N, H7S)	Same behaviour via the control path A–AB as with the 2-way globe valves. The bypass B–AB exhibits the same k_{vs} value as the control path. The characteristic curve in the bypass is linear, see graph on the right.	kv/kvs 100% 50% 0% 50% 100% 50% 100% 50%						
3-way globe valve with linear control path (valves H7WS, H7XS, H7YS) Note The flow characteristics are achieved by the profiling/geometry of the closing element.	Control path A–AB and bypass B–AB both exhibit a linear characteristic curve and the same k_{vs} value, see graph on the right.	ky/kys 100% 50%						
		0% 50% 100% ► Stroke						

Principles of flow control

Direction of flow

The direction of flow of the medium always runs against the cone which closes the control path.

The partial pressure reduction occurs as the result of the supply pressure of the medium (from Port **A**) also having an effect on the opposite side of the closing element through the borehole in the closing element. The actuator therefore only has to deliver the pressure force to ensure that the piston does not leak in its seat. As a result, much greater closing pressures can be achieved than is the case with non-partial pressure-reduced valves.

www.belimo.com

Hydraulic circuits		
	Control characteristics	In order to ensure that a valve achieves good control characteristics, thus making it possible to ensure a long service life for the final controlling element, proper configuration of the valve with the correct valve authority is required. The valve authority a_v is the measure of the control characteristics of the valve in conjunction with the hydraulic network. The valve authority is the ratio between the differential pressure of the completely opened valve at the nominal flow rate and the maximum differential pressure occurring with the closed valve. The greater the valve authority, the better the control characteristics. The smaller the valve authority a_v becomes, the more the operational behaviour of the valve will deviate from the linearity, i.e. the poorer the behaviour of the volumetric flow control. An av of >0.5 is strived for in everyday practice.

Differential pressures Δp_{v100} with globe valve completely open

	2-way globe valves: H4B / H6SP / H6WS / H6XS	/ H6R / H6N / H6S /	3-way globe valves: H5B / H7R / H7N / H7S / H7WS / H7XS / H7YS							
L.	Throttling circuit	Injection circuit with throttling device	Diverting circuit	Mixing circuit	Injection circuit with 3-way globe valve					
rcui	$\Delta p_{v100} > \Delta p_{VR/2}$	$\Delta p_{v100} > \Delta p_{VR/2}$	$\Delta p_{v100} > \Delta p_{MV}$	$\Delta pv100 > \Delta p_{MV}$	$\Delta p_{MV1} + \Delta p_{MV2} \approx 0$					
CI	Typical values: 15 kPa < Δp _{v100} < 200 kPa	Typical values: 10 kPa < Δp _{v100} < 150 kPa	Typical values: 5 kPa < Δp _{v100} < 50 kPa	Typical values: $\Delta pv100 > 3 kPa$ (withdepressurised distributor).Other mixing circuits: $3 kPa < \Delta p_{v100} < 30 kPa$	Typical values: Δp _{v100} > 3 kPa					
Geographical depiction				W VL RL ↓ Δp _{MV} ≈0						
Synoptic depiction				VL ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						

Legend:

	Globe valve, 2-way, with globe valve actuator	VL	Supply	Δp _{VR}	Differential pressure at the respective branching (supply / return) at nominal load
	Globe valve, 3-way, with globe valve actuator	RL	Return	Δp _{MV}	Differential pressure in quantity-variable part with nominal load (e.g. exchanger)
\bigcirc	Pump		Non-return val	ve	Balancing valve

Cavitation diagrams

Cavitation increases wear to the valve cone and seat and may also cause annoying noise. To Cavitation avoid cavitation we recommend not exceeding the differential pressure values stated in the table "Technical data for globe valves" 1) and complying with the maximum differential pressure values (listed in the tables below) with regard to the static pressures. Medium speeds of 1-2 m/s are recommended for quiet HVAC system operation

¹⁾ In the Product and Price Catalogue.

Also refer to the valve-actuator combinations overview or the installation instructions

Cavitation diagram for valves up to 120 °C at different water temperatures

Example:

With hot water at 120 °C and a supply pressure of 600 kPa, a maximum differential pressure Δp_{max} of 120 kPa is permissible.

Cavitation diagram for valves up to 150 °C

Design for use with glycol						
	Salts were formerly added to the water to reduce its freezing point; this was referred to as brine applications. Nowadays, glycols are used and one speaks of refrigerant agents. Depending on the concentration of the refrigerant agent (type of glycol) used and the medium temperature, the density of the water/glycol mixture varies from 1 9%. The volumetric deviation which results from this process is less than the permitted quantity tolerance of the k_{vs} value of the valve (of ±10% in accordance with VDE 2173) and need not as a rule be taken into account, even if glycols require a slightly elevated k_v value. Depending on the type of glycol, tolerance with the valve materials used must be ensured and the permitted maximum concentration may not be exceeded.					
Rounding-off rules	In practice, the desired k_v value never exactly matches the available k_{vs} value of a valve. It is therefore either the next largest or the next smallest valve which is selected when it comes to selecting the valve. This could lead to two situations:					
	1. The desired k_{ν} value is not exactly between two $k_{\nu s}$ values. The value is rounded up or down accordingly.					
Example	A valve is needed with a kv value of 4.8 m ³ /h. The kvs values 4 m ³ /h and 6.3 m ³ /h are available, and a kvs value of 4 m ³ /h is then selected.					
	2. The desired kv value is exactly between two k _{vs} values. We would recommend selecting as follows: • 2-way valve – the smaller k _{vs} value • 3-way valve – the larger k _{vs} value					
Example	A valve is needed with a kv value of 5.15 m^3 /h. The kvs values 4 m³/h and 6.3 m^3 /h are available. Accordingly, a kvs value of 4 m³/h is selected for the 2-way valve and a kvs value of 6.3 m^3 /h is selected for the 3-way valve.					

Design in low-pressure steam applications

Alignment and installation position

Trouble-free operation in steam applications depends on the correct installation position and design of the control valve. The arrangement of the steam pipeline and the positioning of the condensation drain are also decisive.

Restrictions

Belimo control valves may only be used in steam applications which involve a subcritical steam-pressure ratio of between 0 and 0.4, and then only with equal percentage valve characteristic curves (medium speed v max. 50 m/s).

Installations with a resulting pressure ratio in the supercritical range between 0.4 and 1 are not permitted with Belimo valves.

Steam ratio

Dimensions diagram for 2-way and 3-way globe valves

Δp_{v100}

Differential pressure with globe valve completely open

particular leakage class.

 \dot{V}_{100}

 Δp_{v100}

[m³/h]

[kPa]

Selection of globe valves

Pressure class / pressure p _s	permitted	PI	N6	PN16					PN25		PN40				
Max. differential p [kpa]	pressure Δp_{max}	4(00		400 1000			1000		1000					
Valve design (2-w	vay / 3-way)														
Flange (ISO 7005	5-2)														
External thread (I	SO228)														
Valve characterist —— Control path Bypass B-A	tic curve n A–AB NB	≜ kv H	Kv H	ł kv	kv 	≜ kv H	Kv H	kν H	Kv H	≜ kv H	Kv H	≜ kv H	κ _ν Η	Kv H	kv H
Globe valve		Н6R	H7R	H4B	H5B	H6N	H7N	H6WS	H7WS	H6S	H7S	H6SP	H6XS	H7XS	H7YS
k _{vs}	DN														
0.4															
0.63															
1	15														
1.6	15														
2.5															
1															
4	20														
6.3	20														
0.0	- 25														
10	25														
10	32														
16	52														
	- 40														
25															
	50														
40															
58	65														
63															
90	80														
100															
145	100														
145	100														
220	125														
320	150														
630	200														
1000	250														
Max. closing pressures Δp _s Depending on the drive force – Values in the closing pressure table «Overview Valve-actuator combinations»								I							

Selection of globe valve actuators

- For all possible combinations with globe valve actuators and the closing pressures they achieve, see «Overview Valve-actuator combinations»
- For detailed information concerning globe valve actuators, see the data sheets for the globe valve actuators

All-inclusive.

Belimo Europe

BELIMO Automation AG Brunnenbachstrasse 1 CH-8340 Hinwil, Switzerland

Tel. +41 43 843 61 11 Fax.+41 43 843 62 68 info@belimo.ch www.belimo.ch

